

Welcome to SolidPython’s documentation!

Contents:

Hey! All the energy and improvements in this project are going into SolidPython V2. Check it out at Github [https://github.com/jeff-dh/SolidPython] or on its PyPI page [https://pypi.org/project/solidpython2/] before you commit to an older version.

SolidPython

[image: _images/SolidPython.svg]
 [https://circleci.com/gh/SolidCode/SolidPython][image: Documentation Status]
 [http://solidpython.readthedocs.io/en/latest/?badge=latest]
	SolidPython: OpenSCAD for
Python

	Advantages

	Installing SolidPython

	Using SolidPython

	Importing OpenSCAD Code

	Example Code

	Extra syntactic sugar

	Basic operators

	First-class Negative Space
(Holes)

	Animation

	solid.utils

	Directions: (up, down, left, right, forward, back) for arranging
things:

	Arcs

	Extrude Along Path

	Bill Of Materials

	solid.screw_thread

	solid.splines

	Jupyter Renderer

	Contact

	License

SolidPython: OpenSCAD for Python

SolidPython is a generalization of Phillip Tiefenbacher’s openscad
module, found on
Thingiverse [http://www.thingiverse.com/thing:1481]. It generates
valid OpenSCAD code from Python code with minimal overhead. Here’s a
simple example:

This Python code:

from solid import *
d = difference()(
 cube(10),
 sphere(15)
)
print(scad_render(d))

Generates this OpenSCAD code:

difference(){
 cube(10);
 sphere(15);
}

That doesn’t seem like such a savings, but the following SolidPython
code is a lot shorter (and I think clearer) than the SCAD code it compiles to:

from solid import *
from solid.utils import *
d = cube(5) + right(5)(sphere(5)) - cylinder(r=2, h=6)

Generates this OpenSCAD code:

difference(){
 union(){
 cube(5);
 translate([5, 0,0]){
 sphere(5);
 }
 }
 cylinder(r=2, h=6);
}

Advantages

Because you’re using Python, a lot of things are easy that would be hard
or impossible in pure OpenSCAD. Among these are:

	built-in dictionary types

	mutable, slice-able list and string types

	recursion

	external libraries (images! 3D geometry! web-scraping! …)

Installing SolidPython

	Install latest release via
PyPI [https://pypi.python.org/pypi/solidpython]:

pip install solidpython

(You may need to use sudo pip install solidpython, depending on
your environment. This is commonly discouraged though. You’ll be happiest
working in a virtual environment [https://docs.python.org/3/tutorial/venv.html]
where you can easily control dependencies for a given project)

	Install current master straight from Github:

pip install git+https://github.com/SolidCode/SolidPython.git

Using SolidPython

	Include SolidPython at the top of your Python file:

from solid import *
from solid.utils import * # Not required, but the utils module is useful

(See this issue [https://github.com/SolidCode/SolidPython/issues/114] for
a discussion of other import styles)

	OpenSCAD uses curly-brace blocks ({}) to create its tree. SolidPython
uses parentheses with comma-delimited lists.

OpenSCAD:

difference(){
 cube(10);
 sphere(15);
}

SolidPython:

d = difference()(
 cube(10), # Note the comma between each element!
 sphere(15)
)

	Call scad_render(py_scad_obj) to generate SCAD code. This returns
a string of valid OpenSCAD code.

	or: call scad_render_to_file(py_scad_obj, filepath.scad) to store
that code in a file.

	If filepath.scad is open in the OpenSCAD IDE and Design => ‘Automatic
Reload and Compile’ is checked in the OpenSCAD IDE, running
scad_render_to_file() from Python will load the object in the
IDE.

	Alternately, you could call OpenSCAD’s command line and render
straight to STL.

Importing OpenSCAD code

	Use solid.import_scad(path) to import OpenSCAD code. Relative paths will

check the current location designated in OpenSCAD library directories [https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Libraries].

Ex:

scadfile.scad

module box(w,h,d){
 cube([w,h,d]);
}

your_file.py

from solid import *

scadfile = import_scad('/path/to/scadfile.scad')
b = scadfile.box(2,4,6)
scad_render_to_file(b, 'out_file.scad')

	Recursively import OpenSCAD code by calling import_scad() with a directory argument.

from solid import *

MCAD is OpenSCAD's most common utility library: https://github.com/openscad/MCAD
If it's installed for OpenSCAD (on MacOS, at: ``$HOME/Documents/OpenSCAD/libraries``)
mcad = import_scad('MCAD')

MCAD contains about 15 separate packages, each included as its own namespace
print(dir(mcad)) # => ['bearing', 'bitmap', 'boxes', etc...]
mount = mcad.motors.stepper_motor_mount(nema_standard=17)
scad_render_to_file(mount, 'motor_mount_file.scad')

	OpenSCAD has the use() and include() statements for importing SCAD code, and SolidPython has them, too. They pollute the global namespace, though, and you may have better luck with import_scad(),

Ex:

scadfile.scad

module box(w,h,d){
 cube([w,h,d]);
}

your_file.py

from solid import *

use() puts the module `box()` into the global namespace
use('/path/to/scadfile.scad')
b = box(2,4,6)
scad_render_to_file(b, 'out_file.scad')

Example Code

The best way to learn how SolidPython works is to look at the included
example code. If you’ve installed SolidPython, the following line of
Python will print(the location of) the examples directory:

import os, solid; print(os.path.dirname(solid.__file__) + '/examples')

Or browse the example code on Github
here [https://github.com/SolidCode/SolidPython/tree/master/solid/examples]

Adding your own code to the example file
solid/examples/solidpython_template.py [https://github.com/SolidCode/SolidPython/blob/master/solid/examples/solidpython_template.py]
will make some of the setup easier.

Extra syntactic sugar

Basic operators

Following Elmo Mäntynen’s suggestion, SCAD objects override the basic
operators + (union), - (difference), and * (intersection). So

c = cylinder(r=10, h=5) + cylinder(r=2, h=30)

is the same as:

c = union()(
 cylinder(r=10, h=5),
 cylinder(r=2, h=30)
)

Likewise:

c = cylinder(r=10, h=5)
c -= cylinder(r=2, h=30)

is the same as:

c = difference()(
 cylinder(r=10, h=5),
 cylinder(r=2, h=30)
)

First-class Negative Space (Holes)

OpenSCAD requires you to be very careful with the order in which you add
or subtract objects. SolidPython’s hole() function makes this
process easier.

Consider making a joint where two pipes come together. In OpenSCAD you
need to make two cylinders, union them, then make two smaller cylinders,
union them, then subtract the smaller from the larger.

Using hole(), you can make a pipe, specify that its center should remain
open, and then add two pipes together knowing that the central void area
will stay empty no matter what other objects are added to that
structure.

Example:

outer = cylinder(r=pipe_od, h=seg_length)
inner = cylinder(r=pipe_id, h=seg_length)
pipe_a = outer - hole()(inner)

Once you’ve made something a hole, eventually you’ll want to put
something, like a bolt, into it. To do this, we need to specify that
there’s a given ‘part’ with a hole and that other parts may occupy the
space in that hole. This is done with the part() function.

See
solid/examples/hole_example.py [https://github.com/SolidCode/SolidPython/blob/master/solid/examples/hole_example.py]
for the complete picture.

Animation

OpenSCAD has a special variable, $t, that can be used to animate
motion. SolidPython can do this, too, using the special function
scad_render_animated_file().

See
solid/examples/animation_example.py [https://github.com/SolidCode/SolidPython/blob/master/solid/examples/animation_example.py]
for more details.

solid.utils

SolidPython includes a number of useful functions in
solid/utils.py [https://github.com/SolidCode/SolidPython/blob/master/solid/utils.py].
Currently these include:

Directions: (up, down, left, right, forward, back) for arranging things:

up(10)(
 cylinder()
)

seems a lot clearer to me than:

translate([0,0,10])(
 cylinder()
)

I took this from someone’s SCAD work and have lost track of the
original author.

My apologies.

Arcs

I’ve found this useful for fillets and rounds.

arc(rad=10, start_degrees=90, end_degrees=210)

draws an arc of radius 10 counterclockwise from 90 to 210 degrees.

arc_inverted(rad=10, start_degrees=0, end_degrees=90)

draws the portion of a 10x10 square NOT in a 90 degree circle of radius
10. This is the shape you need to add to make fillets or remove to make
rounds.

Extrude Along Path

solid.utils.extrude_along_path() is quite powerful. It can do everything that
OpenSCAD’s linear_extrude() `` and ``rotate_extrude() can do, and lots, lots more.
Scale to custom values throughout the extrusion. Rotate smoothly through the entire
extrusion or specify particular rotations for each step. Apply arbitrary transform
functions to every point in the extrusion.

See
solid/examples/path_extrude_example.py [https://github.com/SolidCode/SolidPython/blob/master/solid/examples/path_extrude_example.py]
for use.

Bill Of Materials

Put @bom_part() before any method that defines a part, then call
bill_of_materials() after the program is run, and all parts will be
counted, priced and reported.

The example file
solid/examples/bom_scad.py [https://github.com/SolidCode/SolidPython/blob/master/solid/examples/bom_scad.py]
illustrates this. Check it out.

solid.screw_thread

solid.screw_thread includes a method, thread() that makes internal and
external screw threads.

See
solid/examples/screw_thread_example.py [https://github.com/SolidCode/SolidPython/blob/master/solid/examples/screw_thread_example.py]
for more details.

solid.splines

solid.splines contains functions to generate smooth Catmull-Rom curves through
control points.

from solid import translate
from solid.splines import catmull_rom_polygon, bezier_polygon
from euclid3 import Point2

points = [Point2(0,0), Point2(1,1), Point2(2,1), Point2(2,-1)]
shape = catmull_rom_polygon(points, show_controls=True)

bezier_shape = translate([3,0,0])(bezier_polygon(points, subdivisions=20))

See
solid/examples/splines_example.py [https://github.com/SolidCode/SolidPython/blob/master/solid/examples/splines_example.py]
for more details and options.

Jupyter Renderer

Render SolidPython or OpenSCAD code in Jupyter notebooks using ViewSCAD [https://github.com/nickc92/ViewSCAD], or install directly via:

pip install viewscad

(Take a look at the repo page [https://github.com/nickc92/ViewSCAD], though, since there’s a tiny bit more installation required)

Contact

Enjoy, and please send any questions or bug reports to me at
evan_t_jones@mac.com.

Cheers!

Evan

License

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.

This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

Full text of the
license [http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt].

Some class docstrings are derived from the OpenSCAD User Manual [https://en.wikibooks.org/wiki/OpenSCAD_User_Manual], so
are available under the Creative Commons Attribution-ShareAlike License [https://creativecommons.org/licenses/by-sa/3.0/].

Library Reference

Indices and tables

	Index

	Module Index

	
	Search Page

	
	members:

	

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to SolidPython’s documentation!

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

