
SolidPython Documentation
Release 0.1.2

Evan Jones

Jan 03, 2022

Contents

1 SolidPython 3

2 SolidPython: OpenSCAD for Python 5

3 Advantages 7

4 Installing SolidPython 9

5 Using SolidPython 11

6 Importing OpenSCAD code 13

7 Example Code 15

8 Extra syntactic sugar 17
8.1 Basic operators . 17
8.2 First-class Negative Space (Holes) . 17
8.3 Animation . 18

9 solid.utils 19
9.1 Directions: (up, down, left, right, forward, back) for arranging things: 19
9.2 Arcs . 19
9.3 Extrude Along Path . 20
9.4 Bill Of Materials . 20
9.5 solid.screw_thread . 20
9.6 solid.splines . 20
9.7 Jupyter Renderer . 20

10 Contact 23

11 License 25

12 Library Reference 27

13 Indices and tables 29

i

ii

SolidPython Documentation, Release 0.1.2

Contents:

Contents 1

SolidPython Documentation, Release 0.1.2

2 Contents

CHAPTER 1

SolidPython

• SolidPython: OpenSCAD for Python

• Advantages

• Installing SolidPython

• Using SolidPython

• Importing OpenSCAD Code

• Example Code

• Extra syntactic sugar

– Basic operators

– First-class Negative Space (Holes)

– Animation

• solid.utils

– Directions: (up, down, left, right, forward, back) for arranging things:

– Arcs

– Extrude Along Path

– Bill Of Materials

• solid.screw_thread

• solid.splines

• Jupyter Renderer

• Contact

• License

3

https://circleci.com/gh/SolidCode/SolidPython
http://solidpython.readthedocs.io/en/latest/?badge=latest

SolidPython Documentation, Release 0.1.2

4 Chapter 1. SolidPython

CHAPTER 2

SolidPython: OpenSCAD for Python

SolidPython is a generalization of Phillip Tiefenbacher’s openscad module, found on Thingiverse. It generates valid
OpenSCAD code from Python code with minimal overhead. Here’s a simple example:

This Python code:

from solid import *
d = difference()(

cube(10),
sphere(15)

)
print(scad_render(d))

Generates this OpenSCAD code:

difference(){
cube(10);
sphere(15);

}

That doesn’t seem like such a savings, but the following SolidPython code is a lot shorter (and I think clearer) than the
SCAD code it compiles to:

from solid import *
from solid.utils import *
d = cube(5) + right(5)(sphere(5)) - cylinder(r=2, h=6)

Generates this OpenSCAD code:

difference(){
union(){

cube(5);
translate([5, 0,0]){

sphere(5);
}

(continues on next page)

5

http://www.thingiverse.com/thing:1481

SolidPython Documentation, Release 0.1.2

(continued from previous page)

}
cylinder(r=2, h=6);

}

6 Chapter 2. SolidPython: OpenSCAD for Python

CHAPTER 3

Advantages

Because you’re using Python, a lot of things are easy that would be hard or impossible in pure OpenSCAD. Among
these are:

• built-in dictionary types

• mutable, slice-able list and string types

• recursion

• external libraries (images! 3D geometry! web-scraping! . . .)

7

SolidPython Documentation, Release 0.1.2

8 Chapter 3. Advantages

CHAPTER 4

Installing SolidPython

• Install latest release via PyPI:

pip install solidpython

(You may need to use sudo pip install solidpython, depending on your environment. This is com-
monly discouraged though. You’ll be happiest working in a virtual environment where you can easily control
dependencies for a given project)

• Install current master straight from Github:

pip install git+https://github.com/SolidCode/SolidPython.git

9

https://pypi.python.org/pypi/solidpython
https://docs.python.org/3/tutorial/venv.html

SolidPython Documentation, Release 0.1.2

10 Chapter 4. Installing SolidPython

CHAPTER 5

Using SolidPython

• Include SolidPython at the top of your Python file:

from solid import *
from solid.utils import * # Not required, but the utils module is useful

(See this issue for a discussion of other import styles)

• OpenSCAD uses curly-brace blocks ({}) to create its tree. SolidPython uses parentheses with comma-delimited
lists.

OpenSCAD:

difference(){
cube(10);
sphere(15);

}

SolidPython:

d = difference()(
cube(10), # Note the comma between each element!
sphere(15)

)

• Call scad_render(py_scad_obj) to generate SCAD code. This returns a string of valid OpenSCAD
code.

• or: call scad_render_to_file(py_scad_obj, filepath.scad) to store that code in a file.

• If filepath.scad is open in the OpenSCAD IDE and Design => ‘Automatic Reload and Compile’ is
checked in the OpenSCAD IDE, running scad_render_to_file() from Python will load the object in
the IDE.

• Alternately, you could call OpenSCAD’s command line and render straight to STL.

11

https://github.com/SolidCode/SolidPython/issues/114

SolidPython Documentation, Release 0.1.2

12 Chapter 5. Using SolidPython

CHAPTER 6

Importing OpenSCAD code

• Use solid.import_scad(path) to import OpenSCAD code. Relative paths will

check the current location designated in OpenSCAD library directories.

Ex:

scadfile.scad

module box(w,h,d){
cube([w,h,d]);

}

your_file.py

from solid import *

scadfile = import_scad('/path/to/scadfile.scad')
b = scadfile.box(2,4,6)
scad_render_to_file(b, 'out_file.scad')

• Recursively import OpenSCAD code by calling import_scad() with a directory argument.

from solid import *

MCAD is OpenSCAD's most common utility library: https://github.com/openscad/MCAD
If it's installed for OpenSCAD (on MacOS, at: ``$HOME/Documents/OpenSCAD/
→˓libraries``)
mcad = import_scad('MCAD')

MCAD contains about 15 separate packages, each included as its own namespace
print(dir(mcad)) # => ['bearing', 'bitmap', 'boxes', etc...]
mount = mcad.motors.stepper_motor_mount(nema_standard=17)
scad_render_to_file(mount, 'motor_mount_file.scad')

• OpenSCAD has the use() and include() statements for importing SCAD code, and SolidPython has them,
too. They pollute the global namespace, though, and you may have better luck with import_scad(),

13

https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Libraries

SolidPython Documentation, Release 0.1.2

Ex:

scadfile.scad

module box(w,h,d){
cube([w,h,d]);

}

your_file.py

from solid import *

use() puts the module `box()` into the global namespace
use('/path/to/scadfile.scad')
b = box(2,4,6)
scad_render_to_file(b, 'out_file.scad')

14 Chapter 6. Importing OpenSCAD code

CHAPTER 7

Example Code

The best way to learn how SolidPython works is to look at the included example code. If you’ve installed SolidPython,
the following line of Python will print(the location of) the examples directory:

import os, solid; print(os.path.dirname(solid.__file__) + '/examples')

Or browse the example code on Github here

Adding your own code to the example file solid/examples/solidpython_template.py will make some of the setup easier.

15

https://github.com/SolidCode/SolidPython/tree/master/solid/examples
https://github.com/SolidCode/SolidPython/blob/master/solid/examples/solidpython_template.py

SolidPython Documentation, Release 0.1.2

16 Chapter 7. Example Code

CHAPTER 8

Extra syntactic sugar

8.1 Basic operators

Following Elmo Mäntynen’s suggestion, SCAD objects override the basic operators + (union), - (difference), and *
(intersection). So

c = cylinder(r=10, h=5) + cylinder(r=2, h=30)

is the same as:

c = union()(
cylinder(r=10, h=5),
cylinder(r=2, h=30)

)

Likewise:

c = cylinder(r=10, h=5)
c -= cylinder(r=2, h=30)

is the same as:

c = difference()(
cylinder(r=10, h=5),
cylinder(r=2, h=30)

)

8.2 First-class Negative Space (Holes)

OpenSCAD requires you to be very careful with the order in which you add or subtract objects. SolidPython’s hole()
function makes this process easier.

17

SolidPython Documentation, Release 0.1.2

Consider making a joint where two pipes come together. In OpenSCAD you need to make two cylinders, union them,
then make two smaller cylinders, union them, then subtract the smaller from the larger.

Using hole(), you can make a pipe, specify that its center should remain open, and then add two pipes together knowing
that the central void area will stay empty no matter what other objects are added to that structure.

Example:

outer = cylinder(r=pipe_od, h=seg_length)
inner = cylinder(r=pipe_id, h=seg_length)
pipe_a = outer - hole()(inner)

Once you’ve made something a hole, eventually you’ll want to put something, like a bolt, into it. To do this, we need
to specify that there’s a given ‘part’ with a hole and that other parts may occupy the space in that hole. This is done
with the part() function.

See solid/examples/hole_example.py for the complete picture.

8.3 Animation

OpenSCAD has a special variable, $t, that can be used to animate motion. SolidPython can do this, too, using the
special function scad_render_animated_file().

See solid/examples/animation_example.py for more details.

18 Chapter 8. Extra syntactic sugar

https://github.com/SolidCode/SolidPython/blob/master/solid/examples/hole_example.py
https://github.com/SolidCode/SolidPython/blob/master/solid/examples/animation_example.py

CHAPTER 9

solid.utils

SolidPython includes a number of useful functions in solid/utils.py. Currently these include:

9.1 Directions: (up, down, left, right, forward, back) for arranging
things:

up(10)(
cylinder()

)

seems a lot clearer to me than:

translate([0,0,10])(
cylinder()

)

I took this from someone’s SCAD work and have lost track of the original author.
My apologies.

9.2 Arcs

I’ve found this useful for fillets and rounds.

arc(rad=10, start_degrees=90, end_degrees=210)

draws an arc of radius 10 counterclockwise from 90 to 210 degrees.

19

https://github.com/SolidCode/SolidPython/blob/master/solid/utils.py

SolidPython Documentation, Release 0.1.2

arc_inverted(rad=10, start_degrees=0, end_degrees=90)

draws the portion of a 10x10 square NOT in a 90 degree circle of radius 10. This is the shape you need to add to make
fillets or remove to make rounds.

9.3 Extrude Along Path

solid.utils.extrude_along_path() is quite powerful. It can do everything that OpenSCAD’s
linear_extrude() `` and ``rotate_extrude() can do, and lots, lots more. Scale to custom values
throughout the extrusion. Rotate smoothly through the entire extrusion or specify particular rotations for each step.
Apply arbitrary transform functions to every point in the extrusion.

See solid/examples/path_extrude_example.py for use.

9.4 Bill Of Materials

Put @bom_part() before any method that defines a part, then call bill_of_materials() after the program is
run, and all parts will be counted, priced and reported.

The example file solid/examples/bom_scad.py illustrates this. Check it out.

9.5 solid.screw_thread

solid.screw_thread includes a method, thread() that makes internal and external screw threads.

See solid/examples/screw_thread_example.py for more details.

9.6 solid.splines

solid.splines contains functions to generate smooth Catmull-Rom curves through control points.

from solid import translate
from solid.splines import catmull_rom_polygon, bezier_polygon
from euclid3 import Point2

points = [Point2(0,0), Point2(1,1), Point2(2,1), Point2(2,-1)]
shape = catmull_rom_polygon(points, show_controls=True)

bezier_shape = translate([3,0,0])(bezier_polygon(points, subdivisions=20))

See solid/examples/splines_example.py for more details and options.

9.7 Jupyter Renderer

Render SolidPython or OpenSCAD code in Jupyter notebooks using ViewSCAD, or install directly via:

pip install viewscad

20 Chapter 9. solid.utils

https://github.com/SolidCode/SolidPython/blob/master/solid/examples/path_extrude_example.py
https://github.com/SolidCode/SolidPython/blob/master/solid/examples/bom_scad.py
https://github.com/SolidCode/SolidPython/blob/master/solid/examples/screw_thread_example.py
https://github.com/SolidCode/SolidPython/blob/master/solid/examples/splines_example.py
https://github.com/nickc92/ViewSCAD

SolidPython Documentation, Release 0.1.2

(Take a look at the repo page, though, since there’s a tiny bit more installation required)

9.7. Jupyter Renderer 21

https://github.com/nickc92/ViewSCAD

SolidPython Documentation, Release 0.1.2

22 Chapter 9. solid.utils

CHAPTER 10

Contact

Enjoy, and please send any questions or bug reports to me at evan_t_jones@mac.com.

Cheers!

Evan

23

SolidPython Documentation, Release 0.1.2

24 Chapter 10. Contact

CHAPTER 11

License

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later
version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

Full text of the license.

Some class docstrings are derived from the OpenSCAD User Manual, so are available under the Creative Commons
Attribution-ShareAlike License.

25

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

SolidPython Documentation, Release 0.1.2

26 Chapter 11. License

CHAPTER 12

Library Reference

27

SolidPython Documentation, Release 0.1.2

28 Chapter 12. Library Reference

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

members

29

	SolidPython
	SolidPython: OpenSCAD for Python
	Advantages
	Installing SolidPython
	Using SolidPython
	Importing OpenSCAD code
	Example Code
	Extra syntactic sugar
	Basic operators
	First-class Negative Space (Holes)
	Animation

	solid.utils
	Directions: (up, down, left, right, forward, back) for arranging things:
	Arcs
	Extrude Along Path
	Bill Of Materials
	solid.screw_thread
	solid.splines
	Jupyter Renderer

	Contact
	License
	Library Reference
	Indices and tables

